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APPLICAnON OF BAYESIAN ESTIMAnON
IN SOCIAL SCIENCE RESEARCH!

by

Mariano E. Garcia-

1. Introduction

1.1 The Problem - Consider the problem of estimating the mean of
a normal distribution. That is, let xl' X2' ... xn be a random sample
of size n from the normal distribution

•
•

•

•

•

2C
!(x;J.L, a2 ) = exp{-=-..!-_(x - J.L);) (1.1.1)

2a2 J
where J.L is unknown and a 2 is known. It is desired to find the best
estimator for J.L.

The most popular method of dealing with this estimation prob
lem is the maximum likelihood method where J.L is estimated by the
sample mean ~. This estimator possesses certain desirable properties,
and one of them is the property of unbiasedness.

There are, however other estimators of J.L~which are not necessa
rily unbiased but may perform better than x in certain situations.
For instance, there are occasions where there is a prior information
on the unknown parameter. This prior information may be in the
form of an initial guessed value, say J.Lo or in the form of a prior
probability distribution of j1', where il is now treated as a random
variable.

To this class of estimators belong the shrinkage, Bayesian and
compromise estimators discussed in Sections 2.1, 2.2 and 2.3,
respectively.
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1.2 Basis of comparison - Basically, these estimators are not com
parable because of the difference in underlying concepts. In the
classical approach to statistical inference, an estimator is considered
desirable if it possesses certain properties such as unbiasedness,
efficiency, sufficiency, etc. It is apparent that no single index of
"desirability" can be devised to evaluate the superiority of one
estimator over the other.

An attempt can be made to make these estimators comparable
by using the decision-theoretic approach to the estimation problem.
For the particular case of estimating the mean of the normal distri
bution with known variance, the estimation problem can be formu
lated from a decision-theoretic viewpoint as follows:

Given (n A, L) and a random sample xl. X2 . . . . , xn from the
normal distribution given in equation (1.1.1), what estimator or
decision function d should the statistician use? Here,

n = parameter space or set of all possible states of nature,
{/J: -oo</J <00)

• A = action space, set of all actions available to the statis-
tician, til: - 00 <A<00)

L = loss function defined on A x n, where L (1J, il) ={J1/J)2

• d = a function of the random sample, where the estimator
Ii= d (Xl' X2 ,, · .. , Xn ) .

Given an estimator d, its risk is defined as the expected value of the
loss function, that is,

•
R (d,/J) = E [d (i"'l' x2.···, xn ) -/J]2

= E [P -/J]2

(1.2.1)

assuming a quadratic loss function. This expression is known as the
mean squared error or MSE. Karlin points out the fact that demand
ing an estimator to be unbiased in all practical situations is an unjus
tified restriction and is incorrect from the point of view of admissi
bility.

1.3 Assumptions and Notations - Throughout this paper, unless
• otherwise explicitly stated, normal distribution with known variance

• and squared error loss function is assumed.
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Although the results presented here are those for the case of

known variance, it is speculated that similar results and conclusions
will be obtained for the case of unknown variance. This is based on
the results of Thompson [13] and. Arnold and Al-Bayyatti [1].
The case of unknown variance is not thoroughly explored in statis
tical literature, owing to the complexity of the risk function espe
cially for the Bayesian case where the joint prior distribution of
u and 0 2 does not have a simple form.

Only for mathematical convenience that in most cases, it is
assumed that fJ. o =0 and 0 2 = 1.

The notations employed in this paper are mostly adapted from
Lavalle [8] and Raiffa and Schlaifer [11]. Here, random variables
are shown with a tilde (-) to distinguish them from values assumed
by the random variable. This notational convenience is especially
necessary for the Bayesian case where a parameter can be considered
a random variable.

The notations for the risk functions are essentially those of Fer
guson [3] where estimators are considered decision functions. For
shrinkage estimators, the risk function used is R (fJ., d) which repre
sents the risk of d at u, In this paper, it is proposed to compare the
different estimators using the risk R (fJ. , d) or MSE as the main
criterion.

It i§ obvious that the MSE of the maximum likelihood esti
mator x is equal to its variance and does not depend on u, The sam-

'"ple mean x was shown to be admissible by Hodges and Lehman
[5] /and Girschick and Savage [4] . However, it does not necessarily
dominate all other estimators in terms of minimum risk, for all
fJ.EO

The concepts of dominance and admissibility are defined as
follows:

An estimator d is said to dominate another estimator d* if

R (fJ., d) ~ R (fJ., d lit
) for all fJ. En, and

R (fJ., d) <R (fJ., d lit
) for at least one fJ. En.

An estimator d is said to be admissible if there exists no other
estimator that dominates it. An estimator is said to be inadmissible
if it is not admissible.

It is not only the sample mean which has the property ofadmis
sibility. In general, any contraction Of.?', say kX where k is a cons
tant, 0 < k ~1 is admissible. This fact was shown by Karlin [6] . The

•
•

•
•

•

••
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estimator 1& surely is biased, but is admissible just like.F: Further
more, 1& may have a smaller MSE than ¥ in some interval in n
though it may have a higher MSE outside this interval. This suggests
that we can use the biased estimator kfin some practical situations.
For Bayesian estimates, the risk function used is R (?T, d) which
represents the risk ofd at the prior distribution ?T.

In deriving the risk function for the different estimators, the
details are ommitted but is contained in the original paper [IS].

2. Theory

2.1 Shrinkage Estimators - These estimators are applicable in situa
tions where there is a prior knowledge in the form of an initial
guessed value lJo. The presumption is that the researcher, because
of his experience and acquaintance with the subject matter, has come
up with a single value as his initial guess of the parameter IJ . In most
cases, such aspects as experience are not translatable into numbers in
a direct way and there is no point in asking the experimenter how he
came up with that value.

Suppose the researcher knows that the true value IJ is near a cer
tam guessed value lJo. Then he can notify j by moving it closer to
lJo : This is done by multiplying it by a shrinkage factor k. This is the
process of modifying the estimator "shrinkage" and the resulting
estimate "shrinkage estimate". In a similar manner, the estimate x
can be moved farther from lJo in which case it is called "expander".

If lJo happens to be close to IJ, then the MSE of the shrinkage
estimator will be lower than the MSE of the unbiased estimator
~ for the interval where lJo is close to IJ. On the other hand, if lJo

happens to be far from IJ, the MSE of the shrinkage estimator will be
higher than that of the unbiased estimator, for the interval where
lJo is far from IJ. Hence, the shrinkage process actually buys increased
efficiency for IJ near lJo at the expense of lower efficiency of IJ

far from lJo .

Shrinkage estimates for the mean of the normal distribution were
proposed by Thompson [13] and Mehta and Shrinioisan [10].
The estimator suggested by Thompson is of the form

.. for the case of known variance and k specified by the experimenter
• in advance. For the case of unknown variance, it is given by
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+J.lo (2.1.1.)

••

The estimate proposed by Mehta and Shrinioisan is given by

where a and b are constants specified by the experimenter. The
admissibility of these estimators were examined by Strawdermann
and Cohen [12J.

The general behavior of these estimators is to perform well (in
terms of minimum risk) if J.lo is close to J.l but to behave badly if
J.lo is far from u . To overcome this limitation. a two-stage process
is proposed whereby the assessment of the initial guessed value is
made in the first stage and the information obtained in both stages
will be pooled together if the result of the initial assessment turns
out to be unsatisfactory.

The proposed two-stage estimation scheme is as follows:
First, it is assumed that there is a prior knowledge of the mean

J.l in the form of an initial guessed value J.lo. The degree of belief
on J.lo can be expressed by a constant k, 0 < k ~ 1. For example, k
near zero implies a strong belief on Jlo while k near 1 implies a poor
knowledge of u«. It is also assumed that there are two samples at
hand; or there is only a first sample available, but the second sample
can be produced either from the already collected data or by per
forming a new experiment.

With these initial assumptions satisfied, the experimenter carries
out the actual two-stage procedure as follows:

1. Select two positive integers n I and n2'

2. Choose a region S (depending on J.lo) in the real axis.
3. Obtain independent random observations xu' x12' ... ,XIn'

and compute the sample mean Xi .
4. If xi E Stake k (Xl ilo) + J.lo, the shrinkage estimate, as the

estimate of'u.
5. If Xl f1. S, take a second set of observations x21' X22' ....

X"2n 2 and take the weighted mean

•
•

•
•

.'

••
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as the estimate of IJ.

95

The case k = I was first studied by Katti [7] and then
extended to the multivariate case by Waikar and Katti [14]. Their
estimator is given by

•
•

[Xl ifi'l ES
d12 (xu' x12' ... ,x2n 2) =1-nIx I + n2x2

nl + n2

ifs1E;l S (2.1.3)

where S = (tJo - c a, lJo + C a) (2.1.4)

= J-t I (2.1.5)c
2+u

• u = n2/nl (2.1.6)

The case for arbitrary k was first proposed by Arnold and Al-
• Bayyatti and is given by

where S = (tJo - c a, lJo + C a)• c
u

(l +u)2 k2- I (2.1.8)

u and k are as defined above. It is suggested that for the shrinkage
factor k, the one used by Thompson can be substituted, thus the
first stage estimate may be taken as the Thompson estimator in
Equation 2.1.1.

.. 2.2 Bayesian Estimates - Suppose such aspects as experience and
• knowledge can be evaluated numerically from recorded data and can
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(2.2.1)

be quantified into a probability distribution. Or suppose that the
prior information can be represented by a probability distribution,
the form and parameters of which are entirely based on the personal
judgment of the experimenter. Then the parameter of interest may
now be considered as a random variable with a probability distri
bution whose mean is JJ.o •

Bayes" theorem for density functions can be used to combine
this prior information with the information contained in the sample
to produce a posterior probability density function which expresses
the experimenter's degree of belief after the performance of the
experiment.

When there is substantial information about the parameters JJ.,
it is convenient to take as prior distribution the natural conjugate
prior given by

f .. ) no t no 2)1T \}J. = -==== -exp. - - (p - JJ.o)
y21T0 20 2

where no =

which is a normal density with mean JJ.o and variance 0 2 [no . If
no is large for fixed 0 2 , the variance of the prior distribu
tion approaches zero implying that this prior information about
the mean is very precise and approaches the point estimate JJ.o.
If no is near zero for fixed 0 2 , the prior variance becomes infinite
which implies a very imprecise knowledge about JJ.o •

On the other hand, if there is no prior knowledge about JJ., it
is convenient to use a prior distribution which has constant density
for all JJ., that is, any value of JJ. is as likely as the other. In this case, .
it is suggested by Lindley [9] to use the vague prior with density
written as

1T (P) d JJ. a dJJ.

•
•

•
•

•

The point estimation problem will now be modified to include
the assumption that 'jJ is a random variable with prior density 1T (P).
Similarly, the density function of the sample observation will now be ..
conditional on a given value of JJ., that is, we write as •



97

(2.2.2)I

.../21(0

APPLICATION OF BAYESIAN ESTIMATION ...

{;
--=...!. (x - J.L )2]

exp
202

!(xlJ.L, 0 2 ) =

••

The MSE at a given value J.L ofil is now obtained by taking expec
tation relative to the conditional distribution of Xl, X2 ... , Xn
given J.L. Since iT is now a random variable, we defme the risk at a
given prior density of/1, i.e.

where the outer expectation is with respect to the prior density.
This expression is called the Bayes risk. It can be shown (see Lavalle
[8]) that the Bayes'estimator which minimizes R (1(, d) is the mean
of the posterior distribution. The following results for the normal
distribution can be verified:

•
•

R (1(, d) =E[E [(d (xl, .... x n ) - J.L)2]} (2.2.3)

•
(a) Let the single observation x be normal with mean J.L and

variance 0 2, where J.L is unknown and 0 2 is known. Let the natura]
conjugate prior of /1' be also normal with mean J.Lo and variance
0 2 /no then the posterior distribution 0 f iT given x is also normal
with mean

• noJ.Lo +x

I + no

and variance

0 2.. I + no

The Bayes-estimate is thus

d~I(X) = noJ.Lo +x (2.2.4)
I + no

and the Bayes risk is

R (1(, d l ) = 0 2 (2.2.5)• I + no•
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(b) If instead of a single observation x, we have a sample x I'

X 2' ... ,Xn, then the Bayes estimate is given by

d~ I (x I , ... ,Xn ) = no Jlo + n X
(2.2.6)

no +n

with Bayes risk

•
R (1Tj, d21 ) = a2

(2.2.7)
no +n •

(c) If we have a random sample from the normal population
with mean Jl and variance a2 and the prior density of Jl is flat, then
the Bayes estimate is

, ) -d3 1 (Xl, ... x« =x

with Bayes risk

(2.2.8)

(2.2.9)

•
•

Note that this is exactly the maximum likelihood estimate.
(d) Let the prior distribution be normal with mean Jlo and

variance 0 2 Ino · A random sample of size nl is taken from the
normal population with unknown mean Jl and known variance 0 2 •

Then the posterior distribution is normal with mean

and variance

0 2
---

flo +n

If another experiment is conducted using a second random sample
of size n2 and if the prior density for this stage is taken as the pos- ••
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terior of the first stage, then the Bayes' estimate of the two-stage
scheme is given by

with Bayes risk

no Ilo + nl xl + n2 X2

no + nl + n2

(2.2.10)

2.3 A Compromise Estimator - With respect to a given prior den
sity, Bayes' estimators always give the minimum Bayes' risk among all
other estimators. There is, however, a bad property of Bayes' estima
tors mentioned by Efron and Morris [2]. This is the fact that the
Bayes' estimator designed to do well versus the population as a whole
may do very poorly against sub-populations which the statistician
recognizes and cares about but for which he has no distributional
information.

To illustrate, suppose the researcher has available information
on the average IQ of the general population and he uses this as prior
density in estimating the mean of a subpopulation (say, children of
Nobel Prize winners). If the true mean of the subpopulation is
higher than the prior mean of the general population, then the result
ing Bayes' estimator will have a high risk.

To overcome this bad property, Efron and Morris proposed a
compromise estimator. The proposed estimation rule is to fix some
allowable deviation from the maximum likelihood estimate x, say
M, and follow the Bayes' rule as closely as possible. For the case
Ilo= 0, a2 =1, n =1, A = I/no, the estimate is given by

•
•

•
•

•

(2.2.11 )

x-M ifx >c

x +M if x <- c

x ifx'E i-« c] (2.3.1)

•• where c = M (A + 1)
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+ 2 D cP (D)

A + 1

The risk is given by

D2 +A + 1
A + 1

D2 + 1

A + 1 fD cP(z)dz
-D.

(2.3.2)

cwhereD =
y'A+1

If the observable is a random sample, then the estimate is given by,
x+M ifx<-c

•
•

" .. nolJ.o +nx
d 12 (x l' ... X n ) - ifx E

no +n

x-M if x> c

[-c, c] (2.3.3)

The constant M is usually taken as a multiple of the standard devia-
tion c . •

To evaluate how well the estimator d~'l' compares with the
Bayes'estimator d:1 , Efron and Morris proposed a measure known as
relative savings loss, denoted-by 1-s, where •

1-s

where

" ')= _R-...-:(.....:11',.....:d.....t.......t....:.)_-_R_(=-11':.--,d_t....t....:...-_

R (11', d ll ) - R' (11', d{l)'
(2.3.4)

R (11', d:~) = risk of the compromise estimator at the prior 11' •

R (11', d1~) = risk 0 f the Bayes estimator at 11' which is equal
to A/(A + 1).

R (11', d11 ) = risk of the maximum likelihood estimator which
is equal to 1 (since 0 2 = 1 and n = 1 byassump
tion), regardless of any 11'.

The relative savingsloss can be derived to be equal to

I·--s =2 [(D2+1)(l-f/>(D»-DcP(D)] (2.3.5)
.
•
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which is only a function of D. Hence, the relative savings loss (that
is, how much he will sacrifice the savings in risk by using d{'l instead
of dl'l) is derived in advance and find D where

D=M 0f+l (2.3.6)

For different values of l-s, Efron and Morris have tabulated the
corresponding values ofD.

(2.4.1)R (p., d2l )

2.4 Some Comparisons

An attempt is made to compare the different estimators so far
discussed by making use of the MSE or R (p., d) for the single-stage
estimators and the Bayes' risk based on an equivalent sample size
for the two-stage estimators.

The MSE for the single-stage shrinkage estimator is given by

k2 a2
~---=--- + (k - 1)2(p. -/lo)2

n

•
•

• The Bayesian estimate and the shrinkage estimate are equivalent
if we let

• k =
(2.4.2)

since

•
nl

(Xl -/lo)+/lo
nlxl+no/lo

=
no+nl no +nl

Hence

R.(p., d2~ ) t nl j2 a2
=

no +nl nl

( 110 ) 2 o-/lo)2+
no+ nl

(2.4.3)

Without loss of generality.iassume that nl =1, a 2 =1, /lo =0 and

•• A = ; then
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(2.4.4)

(2.4.5)

••

The compromise estimator can be shown to have MSE equal to

+ Q (p.)

where

Q (p.) =J.l2 - C2 - 1 - 2A [I/> (c-u) -- ¢ (-C-J.l)]

+ (2A + 1) (C + 2J.l) - 2A I/> (c + )
(A + 1)2 J.l

(2.4.6)

(2.4.7)

•
•

+ (2A + 1) (c - J.l) + 2 J.l A
(A + 1)2

I/> (c - J.l)

•
The MSEs of these three estimators are not directly comparable

because they depend on different parameters. The shrinkage esti
mator is a function of k, the Bayesian estimator is a function of A
and the compromise estimator is a function of both A and C.

The two-stage shrinkage estimators can be compared with the
Bayesian and maximum likelihood estimates by numerical evaluation
of their Bayes' risks and relative savings loss for different values of
kandJ.l=n2/n l o

It is noted that the two-stage estimators perform better than
the Bayesian estimator and the maximum likelihood estimator only
when u and k are small. That is, the prior variance is small or the
belief that J.l is close to lJ.o is strong and the second sample size is
more or less equal to the first sample size.

3. Applications of Bayesian Estimation

3.1 The Educational Placement Test - It is not uncommon in social
science research where the researcher has certain prior information
which he wants to use in estimating a certain parameter. The meth
ods so far discussed will be applied specifically to the Educational

•

•

••
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•

•
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•

w
•

Placement Test [16] which is a project of the National Education
Center.

In line with the government's efforts to develop and utilize
human resources at all age levels, the group of school leavers are
encouraged to continue their education, formal or informal or to
train for jobs they might have some aptitudes for or interest in.

The educational placement test, therefore has been developed
as an instrument to assess knowledge and work experience in various
areas of endeavor which will be given credit for academic equivalence.
This equivalency may be used for grade/year placement in the formal
school system.

The purely academic part of the Educational Placement Test
will be administered to the school leavers who like to go back to
school and finish a certain level of formal education. This part
covers the subject areas of English, Pilipino and Mathematics for the
secondary and elementary levels. Based on the rationale that learn
ing is a continuum, the test for each subject area was prepared in
such a way that the test items for each subject area cover, in a
sequential manner, basic skill~ required for the grade/year level.

A student who takes the tests can go as far as his acquired skills
will allow him to reach the appropriate grade level he can manage.
It might happen that a leaver would be placed in different "grades"
or "levels" depending upon his own abilities and skills. The leavers
will be placed in the highest grade level/year he has attained as shown
by the test results. Whatever deficiencies he has with respect to the
other subject areas will be taken cared of in the proposed Learning
Center.

3.2 Development of Norms - Initially, it is desired to determine
scores that will classify a particular school leaver to a certain year
or grade level. Since these schoolleavers will eventually be absorbed
into the educational system, they will be mixed with those in-school
students. Hence, it was decided to administer the same test to
students presently in school to determine the norms for each subject
area and grade level. The scores were standardized for each subject
area for each year level such that the scores have been converted
to a normally distributed variable with mean 50 and standard devia
tion 10.

The norms are basically obtained from the mean and standard
deviation and it is therefore a problem to determine which mean to
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use - whether the in-school or out-of-school person for a given sub
ject or year level. It may be argued that the school leaver because
of his maturity, experience and training will eventually have a higher
score than his in-school counterpart. It is also possible that many
of these out-of-school youths have not tried to keep up intellectually
and would really be far behind from those with formal education.

Putting it in the context of statistical estimation, we have two
subpopulations namely the in-school and out-of-school persons who
will eventually be mixed together in one population. Using either one
of the means of these subpopulations as estimate of the general
population might produce unwanted results because of the argu
ments cited above. Combining the two means in such a manner that
a reasonable mean is produced would be the best alternative.

One way is to consider the information on the in-school as the
prior distribution and the out-of-school as the sample. The resulting
posterior mean can serve as a reasonable estimate. Since all the
single-stage estimators discussed in the previous section can be given
a Bayesian interpretation, it is possible to consider the estimation
procedure using these methods.

Another way is to consider the information on the in-school as
the prior distribution and the out-of-school who left school at the
same year or grade level as the first stage. The second stage would be
the scores of all other out-of-school regardless of the year or grade
level when they left school.

3.3 Applications of Bayesian and Shrinkage (single-stage) estimators
We apply the above methods on the sample of out-of-school
examinees coming from Region IV shown in Table I in the two sub
ject areas, Mathematics and English.

If the Bayesian estimator using a normal prior with mean 50
and standard deviation 10 (so that no = I) is used for the data in
Table 1 and 2, it follows that the Bayesian estimates would be the
same as the maximum likelihood estimate which is the sample mean
X. This is because the sample sizes are large and the sample mean has
a greater weight than the prior mean. The information corresponding
to the in-school students would therefore not be reflected here.

The shrinkage (single-stage) estimator can be applied to Table 2
since it is known that the in-school students in Fourth Year have
mean 50 and standard deviation 10. Furthermore, as the grade or
year level decreases, the true mean would be at a greater distance

•
•

•
•

•

.,
•
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TABLE 1

STANDARD SCORESFOR MATHEMATICS EXAM (SAMEEXAM
FOR ALL GRADE/YEAR LEVELS)TAKEN BY OUT·OF·SCHOOL EXAMINEES

Year Level of
Dropping Out n Mean s.d.

Grade V 47 41.23 9.46.. VI 235 44.33 9.17

• Year 199 47.71 9.54

II 178 55.69 13.58

111 193 55.94 12.99

IV 96 58.31 13.63

•
•

TABLE 2

STANDARD SCORES FOR FOURTH YEAR ENGLISH EXAM
(TAKENBY OUT·OF·SCHOOL EXAMINEES)

Year or Grade
Level ofDrop

ping Out
n Mean s.d. Shrunken

Mean

Grade V 12 35.33 9.31 41.20

·f
VI 155 42.21 9.57 46.10

Year 188 45.41 10.56 48.16

II 166 51.73 11.90 50.52

111 189 52.29 11.75 50.46

IV 97 53.54 11.87 50.35..
•
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than the 4th year mean which is 50. Thus using the estimate
k (xl - Ilo) + Ilo with k == 0.1,0.2, ... 0.6 for 4th year, 3rd year ...
Grade V respectively, we ohtain the shrunken mean shown in Table 2.

For the results of the Mathematics exam shown in Table 1, the
maximum likelihood estimate would suffice since all students both
in-school and out-of-school take the saine exam regardless of year
level unlike the English exam where there is a separate exam for each
grade or year level.

In fact, the above results show that a single exam can be designed
such that it will be taken by all students regardless of yearlevels.

3.4 Applications ofBayesian and two-stage estimators

The Bayesian and two-stage estimators are generally applicable
to situations where a small sample is available. In fact, it would be
ideal in cases where the taking of the sample is costly since the
estimation procedure is sequential in nature .. Furthermore, a Baye
sian viewpoint is that the experimenter changes his belief everytime
he acquires new information in the value of the parameter.

We can apply the Bayesian and two-stage estimation procedure
to the data on schoolleavers of age 40 and above, shown in Tables
3 and 4.

In Table 3, the sample mean would be considered as the estimate
of the true mean for the same reason as in the previous section.

TABLE 3

STANDARD SCORES OF SCHOOL LEAVERS OF AGE 40 AND
ABOVE IN MATH EXAM

..
•

•
•

Year of
Drop-out n Mean

Year I 7 47.86

II 12 61.25

III 9 54.56

IV 4 50.75

s.d.

••
11.70

14.58

8.63

20.76

In Table 4, the Bayesian estimates were computed sequentially,
that is, the prior mean of 50 and no == 1 was used for the fourth year ti

•
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TABLE4

STANDARD SCORES OF SCHOOL LEAVERSOF AGE 40 AND
ABOVE IN ENGLISH MEAN·

Year of Bayesian Shrinkage
Drop-out n 'Mean s.d. Estimate Estimate

6 58.33 9.69 57.14 53.33

• II 11 59.73 12.84 58.72 52.92

• III 8, 54.5 10.66 57.42 50.90

IV 4 53.5 11.09 56.90 50.35

•
•

•

••

to find the posterior. The posterior in fourth year becomes the prior
in third year, etc.

The shrinkage estimators were computed by using k = 0.1, 0.2,
0.3,0.4 for the 4th, 3rd, 2nd and lsr year levels, respectively.·

It can, be observed that the maximum likelihood estimate, the
Bayesian and shrinkage estimators are low for higher year levels and
high for lower year levels of drop-outs. It appears that the year
level when a particular school leaver of age 40 and above dropped
out has no relation with his score in English. Presumably, English

,proficiency can be acquired even without the benefit of a formal
education.

The two-stage estimation scheme proposed by Katti will be
ihustrated by taking as example the first two rows of Table 4..
The region S is found to be equal to (47.915,52.085) with nt

= 6, n2 = 11. Hence, a second sample is taken and the estimate is
taken to be the weighted mean which is equal to 59.24. Here, the
two samples can- be considered independent since as previously
stated, the year level of drop-out does not affect the scores in the
English exam, for those who are 40 and over.
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